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Abstract. McKendrick-ven Foerster physiologically structured partial differential equa-
tion models are used to investigate asymptotic competitive exclusion, a nongenetic “sur-
vival of the fittest” for ecological morphs which are closed under reproduction. We
consider both the age structured and the individual-based age-size structured settings,
and allow birth, death, and individual growth rates to be time and density dependent in
the general cases. Results suggest a good measure of “ecotypic fitness” is the product 8L
of the birth rate function £ and survivorship function £.. Density dependence in mortality
that uniformly affects the different morphs does not modify the characteristic behavior.”
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i. Introduction

Suppose n ecotypes of a species, or perhaps n species, are competing for a
common resource. Assume the ecotypes are closed under reproduction in that
offspring always belong to the same ecotype as the parent. The Competitive
Exclusion Principle asserts that these ecotypes cannot coexist (e.g. Hallam {47).
Many models have been analyzed to illustrate this principle and its exceptions.
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For example, Hsu et al [8] use equilibria/stability arguments to get competitive
exclusion (except for one structurally unstable case) in a chemostat. In other
classical competition models, cases of persistence can be demonstrated using
the concept of invasibility (Hallam [4]). If one species is at a globally stable
equilibrium in the absence of the other, the absent species can invade if and
only if it has a positive growth rate at the equilibrium. Coexistence occurs when
each species can invade the other and both are given positive initial densities.

The complexity of some models may preclude analysis of equilibria and in-
vasibility criteria. We investigate competitive exclusion as a nongenetic, non-
invasive version of “survival of the fittest” using structured partial differential
eguation models and find sufficient conditions for the asymptotic domination of
the system by the “fittest” ecological morph. Our results suggest a good measure
of ecotypic fitness to be SL, the product of the birth rate function B and the
survivorship function L.

Let the i ecotype be modelled with an individual-based age-size structured
model of McKendrick-von Foerster type for i =1,2,...,a

i 9 = D

= e T ; %(Pf&j) = —pipi
. oo

pilt, 0, mo) = / [ Bit, a, i, PD)pi(t, a, iyda d €y
ato

pi(oa a, ﬁt) = ﬁf(aa ﬁ’l)
P(f) = F(Pl(f: Ty ')1 pZ(ta s ')s ey pn(ta ty ))

pi(t, a, m) is the density at time 7, age a, and mass vector o= (my, ma, ... My)
of the i" ecotype in numbers per unit age per unit mass per unit volume,
dmj/ds = g1, a, m, P(1)) is the growth rate along a characteristic curve
parametrized by s of the j* physiological vartiable in an individual organism
of ecotype i, wi(t, a, m, P(£)) is the per capita mortality rate, 8i(t, a, m, P(t))
is the birth rate, p;(a, m) is the initial distribution as a function of age and
mass, and P(f) is some time-dependent measure of the population or commu-
nity. P() = 312 Jo 157 pilt, a, m)da dm, for example, gives the total number
of individuals in the population at time ¢. All functions, including solutions, are
assumed to be continuously differentiable and nonnegative on the appropriate
nonnegative real cones.

For a derivation of Bquation (1) when g = 1, see Sinko and Streifer [11]. The
equation for g > 1 was apparently first employed by Auslander et al {1]. Exis-
tence and uniqueness of solutions will not be addressed in this paper; existence
proofs for some cases can be found in Li [10] and Tucker and Zimmerman [12].

The ecotypes (or species) are coupled together through density-dependent
effects by the possible dependence of birth, growth, and/or mortality rates on
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P(r). The common resource for which the ecotypes compete may be food, or
some other resource such as space. Hallam et al {5],{6] have applied such a
model to Daphnia and rainbow trout metapopulations.

We demonstrate the competitive exclusion principle in an asymptotic sense
by establishing conditions under which

- Pri(t) = lim jg j(g: pilt, a, ii’t)da dii’t
t=>00 Pri(r)  i=oo fo [ pi(t, a, m)da di

= 00, (2)

where Pri(t) and Py;{(t) are the total numbers of individuais of ecotype { and
J» respectively (we will henceforth say “ecotype i dominates ecotype ;7). We
assume all n ecotypes are initially established and examine the asymptotic com-
position of the system by determining relative asymptotic behavior of ecotype
pairs. If solutions are bounded, all slower growing ecotypes are forced to extine-
tion. Of course, ecotype { may dominate ecotype j while both go to extinction. If
solutions are not bounded, Equation (2) simply describes the relative asymptotic
composition of the pair; both ecotypes might in fact be growing.

In Section 2 we first consider the linear age structured model and then progress
to various cases of time and density dependence in the birth and death rates. In
Section 3 we derive analogous results for the age-size structured model.

2. The age structured model
The age structured model consists of z partial differential equations of the form

dpi | Op;
81‘ + 8(1 - ,(Lz(f, a: P(t)}pr

A 3
pilt, 0) = / Bilt, a, P())pit, a)da @)
0

pi{0, a) = pi(a),

i=1,2,...,n Here P(t) = F(pi(t, ), p2it, ). ..., palt, ) couples the eco-
types in birth and mortality rates, and A is assumed to be the maximum age
attainable by an individual of any ecotype.

The method of characteristics for systems of quasi-linear partial differential
equations with the same principle part (Courant and Hilbert [2]) vields the
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system

e == )
dpi .
-—ES— = ,Uq{!, a, P(I))p‘(f,a),

and integration of Equations (4) gives

fﬂ ,,zx.;(l»ankcx,cr,P(rmea)}da

p.(t a) _ {Pi(f —a, O)e* jﬂ it o, Pl —ata)da i1 > g
1 k] — o
pi{0, a — e Ja- ifr < a.

The survivorship Li(r, a, P) = ¢~ Jo e @aPi=eralds i¢ e probabilit
p P Yy
that an organism born at time t - a survives until age a. Mi(tr,a, P) =

N R Pl . . . . .
o Jo e Pi—ata)da i o wrobability that an organism survives until age
a, given its survival at age a — t and time .

Case 1: 8; = Bi(a) and pi = ui(a)

In this case, the equations are linear and uncoupled. The asymptotic behavior
is well known (see Frauenthal [3]):

tim py(t, @)e™ = Ci(a) > 0.
Fir OO

The eigenvalue A; is the unigue real root of the characteristic equation 4;(A) = 1,
where

A
A{d) = [ e M Bia)Li(ayda,
[
and

Lia) = e Ju ,u,;(oz)c.!a.

Theorem 1. If Bi{a)Li{a) = Balaw)ly(a) for all a € [0, A] with the strict
inequality holding for at least one a in [0, A}, then ecotype | dominates ecotype
2.

Proof. For all A € R and a € [0, A, e™“Bi(@)Li(a) = e~ B, (a)Ly(a) with
the strict inequality holding for at least one @ € [0, A, Thus,

A A
Al{/\) == / e‘A"Bl(a)Ll(a)da > / e““\“Bg(cz)Lz(a)da S Ag(/\)
0 JO
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for all A € R. Let A; be the unique real root of the characteristic equation
A;(A) = 1. Because each A; is monotonically decreasing in A, A; > A;.

Since C;(a) is a continuous function of a, p;(t, @)e™ " —» Ci(a) uniformly in
a on {0, A]. Thus,

Prie ™ [T pit, e M da
£ OO PTg(i)e”“’)‘Er 00 fA P2(r, a)e“"ﬂda
ayda
fg 1( ) -0
jo Co{a)da
and so
P
im L@
t=00 Pra(t)
In particular, ﬁ;;g; is asymptotic to i), 0

Lemma. Ler f € C(R), x € CY(R), and x be positive and nonincreasing. If
j f)ds > 0 for all t > a, then f x(8)f{s)ds > 0 forall t > a

Proof. Integration by parts yields

fi x(5) f(s)ds = x(t)f Fis)ds — / x'(s) /s Flyduds,
and thus [ x(s)f(s)ds = x(t) [} f(s)ds > 0. 0

Theorem 1 compares the fitness of ecotype 1 and ecotype 2 at every age. It
is natural to hope that some measure of average fitness will instead suffice. The
following theorem weakens the fitness hypothesis of Theorem 1, but does so at
the cost of an extra hypothesis.

Theorem 2. If A = 0 and foa Bile)Li{a)da > foa Balo Lz (e)de for all
a € (0, A], then ecotype 1 dominates ecotype 2.

Progf. Tf Ay < 0 the conclusion is obvious, so we may suppose A; > 0.
For A > 0, x(e) = ¢ is a positive, nonincreasing function in C!. For
all @ € (0, A, 1 [ IBH{@L{a) — Ba(a)La(a)lde > 0, and so by the lemma,

N “"‘“[ﬁl(a)Ll(cz) By a(a@)]da > 0 for all a € (0, A]. In particular,
fD e B Li(@)da > [ e By(e)La(@)da for all A > 0, and 50 Ay > As.
The conclusion follows as in the proof of Theorem 1. L

Thus, ecotype 1 dominates if it is not declining and its net reproduction up to
age a exceeds that of ecotype 2 at every age.
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Example 1. At first glance, one might conjecture that if Rip = fOA B Li(a)da

> fo‘d’ B2(a)y(a)da = Rap, that is, if the net reproduction over a lifetime of
ecotype 1 exceeds that of ecotype 2, then ecotype 1 must dominate ecotype 2.
The following counterexample uses step functions; continuous functions can be
chosen close enough to the step functions to sapply the same result.

Let i =paz=0060 Ly =Ly=1), and consider the 8;’s defined as

45 3<a=<4

1 0<ax4d
Bula) = {0 otherwise

> Pal@) = {0 otherwise

Then Ryg = 45 > 4 = Rop, &y = 0.44, and Ay =~ 1. This shows that small
numbers of births early in life may compound faster than a large peak of births
later on.

Note, however, that if A; = 0 and Rig = Ry, then Ay < 0, so ecotype 3
dominates ecotype 2. From an invasibility perspective, Ay < 0 implies ecotype
5 cannot invade if the initial distributions of the ecotypes are assumed to be
the stable age distributions Ci{a). Otherwise, transient dynamics might allow
ecotype 2 to invade even though its dominant eigenvalue is negative.

Example 2. This example illustrates that the condition foa B{e)Li(a)yda >
fo" Ba(e)Ly(a)da for all a € (0, A] does not in general guaraniee A > A Let
the B;’s be defined as

1 0=<a<4
0 otherwise

6 l<ag=<?2
0 otherwise

pray = { B ={

¥

and let py = pp = 2, so that Li(a) = Lx{a) = e, Then [ Bl Li(@)da >
I3 o) La(@)da for all a € (0, c0), and yet Ay = —1 < 0.7 = Ay.

In summary, ecotype 1 dominates when any one of the following is true:

1. Bi(@)Li(a) = Ba(a)La(a) for all a € [0, A], with the strict inequality holding
for at least one a € [0, A}

2. A = 0and [§ Bi{e)Li(a)da > i BalayLa{e)de for all a € (0, Al;

3. 0 = 0and [} B@Li@da > f; Ba@la(a)da.

Case 2: §8; = Bi(a), and p; = o{a) + v(t, P{1))

In this case we will see that time and density dependent mortality assessed
uniformly across ecotypes does not influence the outcome of competition. The
following lemma, which is used to prove Theorem 3, may be found in Karev

[93.
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Lemma. p;(1, a) = q;(t, a)ult) is the solution to

aPi Bp, e ,

% T T (oi(a) + v(t, PO p:
A

pi(t, 0} = / Bi(a)pi(t, a)da (5
0

pi(0, @) = pi(a),

where g ¢, a} is the solution to
=4 =L = oi(a)g;
a

A
4i(t,0) = / Bi(@aitt, da ©
1]

g0, @) = pi(a)

and u(t) is the solution to

du e v, o)

dr
w0 =1 )]
Q) = FluOg (2, ), ultyga(t, ), ..., u(®)ga(z, )). ]

Theorem 3. Suppose p; = oi{a) + v(t, P(t)) for i = 1,2. Let p; and g; ke the
solutions to Equations (5} and (6), respectively. Then

e wda a1, a)da
lim &% = lim S
e[S oAt ayda e [P a(t, a)da

Let p; be the solution to Equation (3), and

Li(t, a, P) = exp {w /‘“[O';’(CY) +v{t~a+a Pt ~a+ a))]da} .
Jo

Theorem 4. If Buayly(t,a, Py = Bala)La(t,a, P) for all t € [0, c0) and
a € [0, A] with the strict inequality holding for at least one pair (¢, a), then
ecotype 1 dominates ecotype 2.

Proof. For all a € [0, A], Bi(a)e” o 1@ 5 gy o= o orda
inequality holding for at least one a € [0, A]. By Theorems 1 and 3, ecotype 1
dominates ecotype 2. d
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Even though the survivorships Li{f, a, P) depend on the solutions to the
partial differential equations, Theorem 4 demonstrates that 8;L;, which could be
measured empirically, is still the appropriate measure of ecotypic fitness.

Case 3: B; = Bi(a) and pi = wilt, a); or Bi = Bilt, @) and pi = wi(a)

Theorem 5 (Induction on closed, bounded-below subsets of R). (Henson and
Hallam [7]). Let Q be a proposition and “O0) " mean “Q1) is true.” Suppose
K C R is closed and bounded below in R, the truth set S = {t € R|Q(n)} is
open in R, and for all t € K, we have O(1) whenever Q(x) for all x € K such
that x < t. Then

Vi € K{O(1)). a

Let Li(t,a) = e Jo mi-ataada fort > aand Mi(t,a) = ¢ Jo ptemataade
fort<a, i=172

Theorem 6. If there exists k > 1 such that

1) Bi{a)Ly(t, @) = k“By(a)La(2, a) > 0 for all a € [0, A] and t € [a, 00);

2} pila—ayBi{ia)M (e, a) = k*py(a—a)Bala)Mo(a, a) for all a € 0, A} and
€10, al; and :

3) p1(0) = p2(0);

then ecotype 1 dominates ecotype 2.

Proof. Continuously extend p, (¢, 0) and pa(z, 0) to all of R by defining p;(z, 0} =

p:i(0,0) for ¢ < 0. Then the truth set {1 € Ripi(t,0) > k' pa(t, M} is open in K.

Let T € [0, 00). If T =0, then p(7,0) > kT o, (T, 0) by assumption 3.
Otherwise, assume p(f,0) > k' pa(r,0) for all 1 € [0,T). We will show

p1(T,0) > k7 pp(T, 0), and then apply Theorem 5.
T <A,

A
p(T, 0) = [0 B (@p (T, dda

T

- /0 Bi(@)p(T — a, OLU(T, da
A

+ [ pi@pta 1M (T, ada
T "

- / Bal @K~ po(T ~ a, YK Lo(T, @)da
Q0

WA
+ ] Bola)k” pala — TYMo(T, a)da
T
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- A
= k' / Bala)pAT, ayda + k" f Bola)po(T, a)da
0 T
= k' pa(T, 0).

(If T = A, it is not necessary to split the renewal integral into two integrals.)
Thus, p{¢, 0) > k' p2(7, 0) for all ¢ € [0, oc); and for each a € {0, A],

; p1(t, @) — lim pit —a, 0L (¢, a)
1= pa(t,a) oo polt —a, O La(t, @)
: iy 3280
> lim kg =
T oo Bua
= 00.

Since the ;s are positive and continuous, g‘zj‘j attains a positive minimum

value on [0, A], so the Himits converge uniformly in a. Thus,

Pri(n) fo pit, ayda
im ————
t~00 Py () ‘"“’°°f palt, )da

Now suppose 3; = B;(t, a) and p; = w;{a). The analogous theorem does not
require the 8;°s to be positive:

Theorem 7. If there exisis k > 1 such that

D B, @)Ly (@) = k4Ba(t, a)La(a) for all a € [0, A] and t € [a, 00);

2) pila—a)Bi(a, a)M{a) = k*pala— o) Bala, a)My(a) for all a € [0, A] and
a € [0, al; and

3) p1(0) > p2(0);

then ecotype 1 dominates ecotype 2.

Proof. As in the proof of Theorem 6, p{t,0) = k'p,(r,0) for all ¢ € [0, c0).
Thus,

p](fs CZ) . Pi(t — 4, O)Ll(a) . !._aLl(a)
e | 8
o ot a B e 0@ — e e

and so the conclusion follows by a uniform convergence argument. a



394 Shandelie M. Henson and Thorpas G. Haliam

Theorems 6 and 7 can be used to compare the asymptotic behavior of nonlin-
ear models to that of linear ones if the proper inequalities hold. If the theorems
are applied to two linear models, there is a relationship between k and the
dominant eigenvalues:

2 (a)

Ci(a) . pale, aye M . At B
Cll@) _ g LUEDE L i (eteiny 222
Ca(a) (o0 pa(t, e T IE’IEO( ) Bia)’

SO Az +ink < Ay
Case 4: B; = Bi(t, a, P(t)), and p; = pi(t, a, P(1))

In this case, birth and mortality rates are functions of the total population
measure P. Notice the survivorships L;(t, a, P) and M,(z, a, P) depend not only
on P(t), but on the segments P({r — a, t]) in the case of L;, and P[0, r]) in the
case of M,;. Although BL is still the measure of fitness and the proofs proceed
as in the previous two theorems, we avoid stating assumptions that depend on
the solution, and in so doing we destroy the trade-off between birth rate and
survivorship.

Theorem 8. If there exists k > 1 such that

1) Bit, a, p) = k*Balt, a, p) for all ¢, p € [0,00) and a & [0, Al

D pilt, a, p) < polt,a, p) forall i, p € [0, c0) and a € [0, Al;

3) pila — @) = k¥ pala — ) for all a € [0, A and « € [0, a] with the strict
inequality holding for a = «;

then ecotype 1 dominates ecotype 2.

Proof. By 2), Li(t,a,P) = La(t,a, F) for all 2 € [0,A] and 1 € [a, o),
and M (t,a, P) = Mat,a, P} for all a € [0, 4] and ¢ € [0,al. Thus,
by 1) and 3), Bi(t, a, P()Li (.0, P}y = k4 Ba(t, a, P(t) Lo (¢, a, P) for all
a € [0,A] and ¢t € [a,00); and fi{a — a)Bi(a, a, Pla)M (e, a, P) =
k% py(a — @) Bale, a, P(a))Ma(a, a, P) for all a € [0, A] and « € {0, a]. Also,
p1{0) > p2(0) by 3).

By the same argument as in the proof of Theorem 6, p;{z, 0) > k'pa(z, 0) for
all ¢ € [0, o). Then for each a € [0, A],

li pl(taa) . Pl(t“aao)Ll(f>a,P)
im e = {1m
00 P2(f; a) 1o pz(t - d, O)Lz(ts a, P)
> lim kK7
P OO

== 0Q,
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The last (and hence first) limit is uniform in g on [0, Al, so

Py _ o o1t @)da

e = 00, (.
e Pra(t) = [A 5,1, a)da

3. The age-size structured model

We now present analogues of the main results of Section 2 using an age-size
structured model with one mass variable:

c'ip,- 3pf d o
ot + da + am (pigi} = —pilt, a, m, P} p;

M rA
pi(r! 01 mf]) = f f Bf(t’ a, m, g, P(t})pl(ta a, m)da dm (8)
Q 4

pi(0, a, m) = pi(a, m)
P(f) = F(pl(['n i ‘)1 cees pn(t’ s '))a

where g; = g;{t, a, m, P(1)).

In Equation (1), all newborns were assumed to have the same birth size
mg. If mass increases monotonically with age, such a model is equivalent to
an age structared model. Even if mass and age are not one-to-one, mass can
be parametrized by age and time, and so all the results of Section 2 still hold
with a few modifications. In Equation (%), however, newborn size my can take
on any value in the mass range [0, M]. We will assume an organism of age
a and mass m gives birth to newborns within this continuous range of sizes.
Bit, a, m, mg, P()) will denote the rate at time ¢ at which an organism of age
a and mass m gives birth to newborns of size mg. We also assume that given
an organism of age ¢ and mass m at time £, its unique size mqg(t, a, m) at birth
can be determined (characteristic curves do not intersect). If an organism born
at time t — a has birth size myg, its unique mass m(t — a, @, mp) at age a and
time ¢ is determined.

Suppose the system consists of 2 ecotypes. Because in general the ecotypic
individual growth rates g, g, are distinct, the mass variable m (a function of
age and time) 1s different in each ecotype. We will denote them by m; and
my, respectively, In particular, we can no longer directly use the method of
characteristics, for the principle pasts

op; | dp dpi
o e T8
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of the equations are not the same. Hence, we extend each three dimensional
distribution into a four dimensional distribution

dpi | Opi 0 a
wnll alioeslie e V4 1 W = —u(t, a,m;, P i
o + o + p (pigy) + Py (pig2) i, a, my, P(t)p

pit, 0, mig, mag) =

M M pA . (9)
/ f / Bi(l', a, w, Mg, Mg, P(I))p;(l, a, my, maydadm, di’?‘tz
4G 0 0

pi(01 a, mp, m?,) = ﬁi(as ny, mZ)
P(t} = ﬁ(pl(tﬁ ERE) ')’ P2(ts I ))1

where g; = gi(t, a, my, P{1)), so the density of each ecotype is expressed per
unit mass of the other ecotype.

Model (9) can be reduced to the original model because g;(¢, a, m;) =
fOM pi(t, a, my, mp)dmy, j 5 i, is the solution to Equation (8) under the fol-
fowing assumptions:

1 gila,m) = [, pika, my, moddmy, i # J;

2. F(,I},M pi(t, + -, ma)dmy, fGM pa(t, - my, ydmy) = F(pi(t, -, - ), pa(t -, )

3. g; =0 whenever m; = M or m; = 0; and

4, Bi(t, a, mi, myg, mao, P(1)), the rate at which newborns of ecotype i are started
on the characteristic curve that has initial mass valaes of m;q and myy, is given
by

M
Bi = Bilt, a, my, myg, P(0)Dimy), i j, with f Dimp)dmy = 1.
0
Each equation can be written with the same principle part:

dpr o Bpi . dpi :
m&+ﬁ%31—’)i+gz~fim—(m+§j%

ag2
% " b + 3, P (10)

The extra “mortality” terms on the right hand side are “elastic” terms for the
distribution in the m; and m, directions, caused by changes in the population
density due to the nonlinear growth of mass in time. The equations for the
characteristic curves are now

dt
Il =1 1
Js (b
da
o |
ds

dml

_dS—- = gi(r} a, miaP(‘t))
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d

S = ga(t, @, m, (D)

dpy gy | g
dpy g1 | Og

ds ( 2+3_m“;+8m2)p2

Along characteristics, ¢, a, m, and m, progress together according to the
first four ordinary differential equations and their initial conditions. Whenever
a point (¢, a, my, ma) is specified, unique birth sizes myy = mio(t, a, m) and
My == mag(t, a, my) are determined; and whenever an age a and time ¢ and
birth sizes m;q and mog of an organism born at time 1 — a are specified, unique
sizes my = m(t — a, a, myp) and my = my{t — a, a, ma) at age ¢ and time ¢
are determined.

Integration of Equations (11) yields

pi(t! da, My, m2) ==

pit — a, 0, myo, mop) Li(t, a, my, PYJ(t, a, m\, my, P),
for t>a

pi(0, a —t, i {a — 1), my(a — IM,(t, a, m, PYK (2, a, m;, ma, P),
for t < q

where

J(t, a,my, my, P) = P j:(gf;’lw!w%%)(I—a—i—a»,a,ml(rwa,a,mm),mg(f—a,a.ng),P(wawa))da
K(f, a, mi, my, P) = e j::(%’?+§f%)(:ma-i-a,ml(r-—cr—i—cr,rnm),mg{t-—a.a,mgg),P{t—a+a))c{a
L,‘(f, a, m, P) — e_—‘f;' it —aba, o m(t—d, o, mp ) P (E— o)) dee
M,-(I, a, m;, P) - e«u j{:_r filt =gt en,m (- a, @m0}, P(t— a4+ yd e
mip = mio(l, a, m;),
and m;o(a -~ ¢) is the mass at age « — ¢ and tirne O in the initial distribution of

an organism which has mass m; at age & and time 1.
Henceforth we specify Dy (mag) = Da(mo) = ﬁ so that

- I
Bi(fa a, my, nlyg, Mz, P(t)) = Bi(ta a, Hy, iy, P(I))I/I_
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Case 1: §3; = Bila, mi, mp) = Bila, m)bi(my), fOM bi(mg)dmy = 1,
i = pila, my), and g = gia, m;}

In this case the asymptotic behavior is known to be
lim p;{¢, a, my, ma)e N = Cila, my, my) > 0,
{00

where A; is the unique real root of the equation A;(A) = I, and

MM A
Ay(A) == / f ] e~ Bi(a, m)bi{myg(a, m))
Jo Jo Jo
Di(mjgla, m;))Lia, mJ (a, my, my)da dm; dmy

(Webb [13]; Karev [9]).

Theorem 9. If B (a, m}by(miola, mi)Li(a, mi) = By(a, ma)ba(maola, ma))
Lo(a, ma) for all a € [0,A] and my, my € [0, M] with the strict inequality
holding for at least one triple (a, my, my), then ecotype 1 dominates ecotype 2.

Proof. A(A) > Ax(A) for all A € R, and s0 A; > Ay. The conclusion follows as
in the proof of Theorem 1. O

Case 2: 8; = Bila, mi, mp) = Bi(a, m}¥b;(mp), fOM bi(mi)dmy = 1,
wi = ai(a, m;) + v, P(1), and g = gi(a, m;)

Again, mortality assessed uniformly across ecotypes does not change the
outcome of competition. The theorems and proofs in this case are analogous to
those in Case 2, Section 2.

Henceforth 8; need not be separable in the my variable as it was in Cases 1
and 2. :

Case 3: B8; = Bi(a, mi, mp), pa(t, a, my), and g; = gi{t, a, m;, P(1))

Theorem 10. [f there exists k > 1 such that

1y Bila, my, mo)Li(t, a, my) = kBala, ma, mag)Lalt, a, my) > 0 foralae
[0, A}, my, Mg, ma, ag € [0, M}, and t € [a, 00);

2) pila — a, iy, i) Bi(a, my, mo)My (e, a, my) 2
k®pala — e, iy, fa) Bala, ma, ma)Ma(a, a, my) _
for all a € [0, AL, my, mig, ma2, my € [0, M], and a € [0, al, where iy =
i(a — @) is the mass at age a — « and time 0 of an organism having age
a and mass my; at time o, and
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3} P10, myg, mag) > Pa(0, mug, mao) for all myp, mag € [0, M];
then ecotype 1 dominates ecotvpe 2.

Proof. Let

Szt e R|Vmp, my € [0, M](p1{z, 0, mw, mag) > k' pa(t, 0, myg, mag)}

be the truth set. We will show {0, co) C § using Theorem 5.

First we must show § is open in R. By 3), 0 € 5, so § is nonempty. Let
7 € 8 and define f(r, myg, Mag) == pi{t, O, myg, mag) — k"p;)_(l‘, 0, myp, mag). Let
¢ = mily yeto il f (7, X, Y3}, F(&, mo, mge) is uniformly continuous on the com-
pact rectangle B == [0, 27] x [0, M] x [0, M1, so there is § > 0 such that for any

two points (¢, myg, mag), (I, myy, myy) € B, | (¢, mug, mag) ~ f (', my, mﬁg)_l <
5 whenever [|(7, mip, mag) ~ {t', mig, myp)l| < 8. Thus, |7 — 1| < § im-

plies | f{7, mg, mae) — f{t, mg, ma)i < % for all myg, map € [0, M], and so
Ft, myg, mag) > O for all mg, myg € [0, M]. Hence, ¢ € S whenever |71 < §.

Let T €[0,00). If T =0, then T € S by 3). Otherwise, assame ¢ € § for all
te[0,T). Let myg, map € [0, M} Then if T' < A,

pU(T, 0, mg, ma)

1 M M A
M / / / Bila, my, mo)p (T, a, my, my)dadm, dmy
4] 0 JO

| M opMoT
= ﬂ/ / f 5}(51, mﬁ’ml{))pl(T'—a'» 0, ﬁ‘i]()(T, a, ml):

G 0 0
(T, a, ma))y - LT, a, m))J(T, a, my, my, P)dadm; dma

1 3 M A
+ = Bl(a’ m}9m10)ﬁl(amT=ﬁ1}(a-‘T)!ﬁ,tZ(a—T))'
M

o Jo Jr

ML a, m)DK(T, a, my, my, P)dadm; dms
1 M 'M T

> ‘ﬁ?/ / f K Bala, my, maoYk™ " pa (T — a, 0, (T, a, my),

o Jo Jo
ao(T, a, me)) « Lo(T, a, ma)J(T, a, m|, my, Pddadm, dma

1 M oM A
+ —M_kT / / / 132(61‘» i, mQG)ﬁZ(a - T! ﬁil(a - T}s ﬁiz(a o T))
o Jo Jr
Mo(T, a, ma)K(T, a, my, my, Fdadm, dm»
1 M M A
o= ﬂka f / Bala, ma, man) (T, a, my, my)da dm dm»
0 Jo Jo

_— ksz(Ts G, ml(}s m20)-



400 Shandelle M. Hensor and Thomas G. Hallam

(if T > A, it is not necessary to split the renewal integral into two integrals.)
Since mg and myy were arbitrary, T € S. Thus,

it a, my, ma)
—oo palt, &, My, My)

Pt —a, 0, mg, mao) Ly (t, @, m)J (¢, a, my, my, P)
i=o0 palt — a, 0, myg, mao) La(t, a, ma)J (2, a, my, ma, P)

- lim k ;ﬁz(a M2, Mag)
Trsoo Bi{a, my, mo)
= 0.

EG— is positive and continuous on its compact domain and is hence bounded away
from zero, making the above limits uniform in age and size. Thus,

Pr@ _ . Jo Jo Jo pit @ mi, my)dadm dmy
t=roo Pra(t) -0 jOM fOM fDA oft, a, my, o ydadmy dms

As before, the time dependency may be in the §; instead of the w;, and in
this event the ;s can take on the value zero,

Case 4: B; = Bilt, a, my, my, P(1)), i = pa(t, @, my, P(1)), and
& = gilt, a, my, P(1))

The proof of the following theorem is directly analogous to that of Theorem 8.

Theorem 11. If there exists k > 1 such that

1) Bilt,a, my, mug, py = k“Balt, @, mp, mag, p) for all t,p € 10,00), a €
[0, A], and my, M, My, Mg € iO, M],‘

2) wilt,a, my, p) < palt,a,me, p) for all t,p € [0,00), a € [0,A], and
my, mp € [0, M]; and

3) pila—a, my, my) = k*“pola—a, my, my) forall a € {0, A], « € [0, al, and
my, my € [0, M] with the strict inequality holding for a = «; then ecotype 1
dominates ecotype 2. U

The above results can be extended to an arbitrary finite number of state
variables in the obvious way.

4. Conclusions

The notion of “survival of the fittest” tautologically identifies the survivors with
the fittest types of individuals. The results in this paper suggest a measure of
ecotypic or species fitness to be the product BL of the birth rate and survivorship
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functions. This is basically true even when birth, growth, and mortality rates are
time and density dependent and the asymptotic behavior of the solution is not
known.

In general, determining relative asymptotic behavior between two ecotypes
requires more than comparing “average” measures of fitness such as Ry =
fo fo” BLdadm (see examples 1 and 2). Small numbers of births early in life
may compound more rapidly than a large birth spike later on. If, however, the
fitness measure BL of one ecotype exceeds that of another at every set of state
variables, then the first ecotype will be dominarnt. If solutions are bounded, a
reasonable requirement for the density dependent cases, dominance in the first
ecotype forces the other to extinction.
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